Comparative Transcriptome Profiling of Two Tibetan Wild Barley Genotypes in Responses to Low Potassium

نویسندگان

  • Jianbin Zeng
  • Xiaoyan He
  • Dezhi Wu
  • Bo Zhu
  • Shengguan Cai
  • Umme Aktari Nadira
  • Zahra Jabeen
  • Guoping Zhang
چکیده

Potassium (K) deficiency is one of the major factors affecting crop growth and productivity. Development of low-K tolerant crops is an effective approach to solve the nutritional deficiency in agricultural production. Tibetan annual wild barley is rich in genetic diversity and can grow normally under poor soils, including low-K supply. However, the molecular mechanism about low K tolerance is still poorly understood. In this study, Illumina RNA-Sequencing was performed using two Tibetan wild barley genotypes differing in low K tolerance (XZ153, tolerant and XZ141, sensitive), to determine the genotypic difference in transcriptome profiling. We identified a total of 692 differentially expressed genes (DEGs) in two genotypes at 6 h and 48 h after low-K treatment, including transcription factors, transporters and kinases, oxidative stress and hormone signaling related genes. Meanwhile, 294 low-K tolerant associated DEGs were assigned to transporter and antioxidant activities, stimulus response, and other gene ontology (GO), which were mainly involved in starch and sucrose metabolism, lipid metabolism and ethylene biosynthesis. Finally, a hypothetical model of low-K tolerance mechanism in XZ153 was presented. It may be concluded that wild barley accession XZ153 has a higher capability of K absorption and use efficiency than XZ141 under low K stress. A rapid response to low K stress in XZ153 is attributed to its more K uptake and accumulation in plants, resulting in higher low K tolerance. The ethylene response pathway may account for the genotypic difference in low-K tolerance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptome profiling reveals mosaic genomic origins of modern cultivated barley.

The domestication of cultivated barley has been used as a model system for studying the origins and early spread of agrarian culture. Our previous results indicated that the Tibetan Plateau and its vicinity is one of the centers of domestication of cultivated barley. Here we reveal multiple origins of domesticated barley using transcriptome profiling of cultivated and wild-barley genotypes. App...

متن کامل

ارزیابی تحمل به تنش خشکی در جو زراعی و وحشی براساس صفات فیزیولوژیک و شاخص‌های تحمل

Drought stress is one the most limiting factors for crop production worldwide. The wide ecological and environmental dispersion of crop wild relatives, generates a high potential of their adaptive diversity to abiotic stresses such as drought. In this study 21 (including 10 cultivated and 11 wild barley (Hordeumvulgaressp. spontaneum))genotypes were evaluated under three soil water conditions f...

متن کامل

Tissue Metabolic Responses to Salt Stress in Wild and Cultivated Barley

A thorough understanding of the mechanisms underlying barley salt tolerance and exploitation of elite genetic resource are essential for utilizing wild barley germplasm in developing barley varieties with salt tolerance. In order to reveal the physiological and molecular difference in salt tolerance between Tibetan wild barley (Hordeum spontaneum) and cultivated barley (Hordeum vulgare), profil...

متن کامل

Metabolite Profiling of Barley Grains Subjected to Water Stress: To Explain the Genotypic Difference in Drought-Induced Impacts on Malting Quality

Grain weight and protein content will be reduced and increased, respectively, when barley is subjected to water stress after anthesis, consequently deteriorating the malt quality. However, such adverse impact of water stress differs greatly among barley genotypes. In this study, two Tibetan wild barley accessions and two cultivated varieties differing in water stress tolerance were used to inve...

متن کامل

HvEXPB7, a novel β-expansin gene revealed by the root hair transcriptome of Tibetan wild barley, improves root hair growth under drought stress.

Tibetan wild barley is a treasure trove of useful genes for crop improvement including abiotic stress tolerance, like drought. Root hair of single-celled structures plays an important role in water and nutrition uptake. Polyethylene-glycol-induced drought stress hydroponic/petri-dish experiments were performed, where root hair morphology and transcriptional characteristics of two contrasting Ti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014